AUSTRALITES FROM NNE. OF MORGAN, SOUTH AUSTRALIA By George Baker

Introduction

From an area of approximately one mile in extent, situated 16 miles NNE. of Morgan, South Australia, 148 australites were collected by the late Mr Benjamin Thamm and Mrs Doris Thamm between 1924 and 1928. The specimens were made available for study by Mrs Thamm in 1964 through the courtesy of Mr R. Seeger, and are said to be representative of the australites occurring in this area. They are now registered as numbers E3965-E3992, E3994-E4113 in the National Museum of Victoria.

The specimens were discovered on relatively bare areas in flat grazing country where some soil deflation had occurred, and were exposed at the surface of the ground on patches of hardened sandy soil with associated light-brown and brownish-red to red loam. The most fruitful searching periods are reported by Mrs Thamm to have been in dry windy weather. Specimens were located during relatively frequent traverses across the bared areas, and usually occurred with the anterior surface facing upwards. The author is indebted to Mrs Thamm and her brother, Mr Waldron, for information relating to the specimens.

Morgan is situated at the junction of Burra Creek and the Murray River, on the 'Northwest Bend' of the Murray, at approximately 140°E. and 33°30'S., 90-100 miles NE. of Adelaide. The soils from which the australites were released occur on Tertiary sediments that form part of an inland basin.

Australites subjected to a comparable degree of weathering and with different proportions of shape types were found between 1936 and 1940 in this general region at Florieton on Burra Creek some 20 miles NW. of Morgan (Mawson 1958) where they occurred under similar conditions, the areas being soil-deflated patches in a semi-arid region originally cleared and ploughed for growing wheat and later utilized for sheep grazing.

Two other specimens included with the Thamm collection of australites are black in colour, dense in texture, but not glassy like the australites; they resemble black lydianstone. One is small, rounded, sub-spherical and measures $5 \text{ mm} \times 4.5 \text{ mm} \times 3.5 \text{ mm}$. The other is larger, elongated, and is a ventifact with four facets cut and shaped by windblown sand. One facet is larger and one smaller than two of intermediate size, and the specimen measures $38 \text{ mm} \times 10.5 \text{ mm} \times 9.5 \text{ mm}$. Stones of this size, shape and colour have frequently been mistaken for australites.

Dimensions, weights and specific gravity values

The dimensions, weights and specific gravity values of the 148 australites constituting the Thamm collection are set out in Table 1. The specific gravity values were determined by weighing each thoroughly cleaned specimen in air and deionized water (T = 18 °C.) on an air-damped chemical balance. Ranges in values and average values for these properties are brought together in summarized form in Table 2. The least weight of 0.314 gms (Table 1, 120) was for a small oval (Pl. 10, fig. 34), and the greatest weight of 72.349 gms (Table 1, 1) for a large core (Pl. 10, fig. 2). The lowest specific gravity (Table 1, 98) was for a large teardrop

GEORGE BAKER

(Pl. 12, fig. 27), and the highest (Table 1, 132) for a canoe-shaped-shaped form (Pl. 11, fig. 32-34). From the specific gravity-silica content relationships of tektites (Baker 1959a, Fig. 13), the range in specific gravity of the Morgan australites points to a range in silica content of 71.5% to 79.5%, with an average of 74.5%. The frequency distribution of the 148 specific gravity determinations is given in figure 1.

FIG. 1—Frequency polygon showing distribution of specific gravity values for 148 australites from near Morgan, South Australia. The arithmetic mean of the specific gravity values is 2 405.

In as much as the silica content of australites varies inversely as the specific gravity, with the lower specific gravity values indicating glass rather richer in SiO_2 , the average values for the specific gravity of the various shape types shown in Table 2 point to the groups of the lenses, boats, teardrops and most of the dumbbells being rather more acidic than the groups of the round cores, ovals and canoes. This contrasts with the australite shape types from Mulka, where the average specific gravity values indicate that most ovals, canoes and teardrops are rather more acidic than the lenses, boats, dumbbells and round cores (Baker, in press). Since average values are under consideration, the variations shown are more likely due to chemical variations than to changes in small gas bubble contents from shape group to shape group.

Comparison of australite shape type percentages and weights from near Morgan, from Florieton, and from Mulka, S.A.

On the grounds that the numbers of specimens classifiable into specific shape types for the australites from the Morgan district and from Florieton respectively

	Sp. gr.	2.403 2.389 2.410	2.401	2.411	2.400 2.392	2.396	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
	Weight (gms)	$3 \cdot 349$ 1 $\cdot 588$ 1 $\cdot 027$	1.288	4 · 045	2.275 2.212	2.234	$\begin{array}{c} 39.671\\ 33.981\\ 33.981\\ 33.981\\ 33.981\\ 33.981\\ 12.481\\ 11.955\\ 111.$
Morgan, S.A	Flange width (mm)	2.6					
tralites from	Width, (mm)						
s of 148 aus	Length (mm)						
gravity value	Depth (mm)	9.0 6.0	7.2	10.6+ (back surface broken)	7.4 8.2	7.8	224.8 224.8 226.1 2194.5 117.5 219.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12
and specific	Diameter (mm)	20.2 14.9 12.6	15.9	22.5 (ex-flange)	16·9 16·4	16.7	336.5 346.5 327.0 327.5 327.0 227.0 220.0 200.00
imensions, weights	Shape Type	Flanged button (round in plan)	Average	Hollow button (broken)	Lens Lens	Average	Round core
D	Collection Number	111 117 119		112	116 138		23222228601111100860742 4232222288607111100860742
		(lai)	.01 9	(7.7% 4 Bi	(%E səsuə	(1 · E	44 Round cores (29.7%)

TABLE 1

41

AUSTRALITES FROM NNE. OF MORGAN

2		GEORGE BAKER		
	Sp. gr.	2.412 2.412 2.412 2.414 2.429 2.339 2.429 2.339 2.429 2.339 2.429 2.339 2.429 2.339 2.429 2.429 2.339 2.429 2.339 2.429	2.369 to 2.408	00000000000000000000000000000000000000
	Weight (gms)	8: 788 8: 525 6: 507 6: 507 6: 507 6: 507 6: 507 6: 507 6: 583 5: 453 5:	2 · 580 to 41 · 831 12 041 (43 speci- mens)	28 808 22 608 12 155 10 849 9 365 7 7365 5 727
	Flange width (mm)		n average	
	Width (mm)		tot included i	31.9 222.9 17.9 222.9 17.9 222.9
manne m)	Length (mn1)		и ()	39.3 30.5 20.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3
TADLE I LUU	Depth (mm)	2000 2000 2000 2000 2000 2000 2000 200	10.0 to 27.8 16.5	17.9 13.5 13.5 11.7 11.7 10.3
	Diameter (mm)	22233377666 6000000000000000000000000000000	15 0 to 36.5 22 6	
	Shape Type	,, , , , , , , , , , , , , , , , , , ,	Range Average	Oval (broad) ,, (broad) ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
	Collection Number	29299666666666666666666666666666666666		48 50 53 53 54 54 57 57 57
		44 Round cores (29.7%)	()	%8.01) slev0 81

TARLE 1 (continued)

	Sp. gr	2.370 2.427 2.404	2.391 2.393 2.393 2.396 2.396 2.396	$2 \cdot 384$ $2 \cdot 393$ $2 \cdot 379$ $2 \cdot 379$	2.379 2.431 2.395	2 · 406 2 · 376 2 · 376 2 · 386 2 · 379 2 · 390 2 · 390
	Weight (gms)	2.550 to 72.349 12.556	2.599 2.459 2.460 1.818 1.447 1.310	1.500 2.302 0.772 5.568 3.668 3.668 2.306 2.204 2.204	0.772 to 12.236 3.233	9.557 6.227 7.168 4.587 3.415 5.866 (6.689) ²
	Flange width (mm)				$(2\cdot 3)^1$ $(2\cdot 3)^1$	
	Width (mm)	13.9 to 44.5 20.8	12:3 11:6 14:2 14:1 8:9	10.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	8.9 to 19.0 13.3	19.9 17.6 18.1 12.9 14.2 11.7 11.7
tinued)	Length (mm)	16.8 to 46.4 24.2	23.2 21.6 23.9 23.9 23.8 21.2 21.2	200 200 200 200 200 200 200 200 200 200	15 · 1 to 39 · 2 23 · 1	33.9 29.7 29.7 22.0 22.0 (22.0; (22.0; 0.18 30.35)
ABLE 1 (con	Depth (mm)	7.9 to 28.4 14.5	44.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	ッ 。 。 。 、 、 、 、 、 、 、 、 、 、 、 、 、	5.0 to 13.8 7.0	$12.3 \\ 110.9 \\ 9.7 \\ 10.1 \\ 18.9 \\ 15.7 \\ $
T	Diameter (mm)					
	Shape Type	Range Average	Boat ,,, ,, (cance-like in one	aspect) (small) (small) Bad	Range Average	Boat core """"""""""""""""""""""""""""""""""""
	Collection Number		69 71 72 73 73	75 77 83 83 83 86 83 86 83 86 83 86 83 11 15 90 90 90 90 90 90 90 90 90 90 90 90 90		55 56 58 81 85 85 146
]	(%Z·	18 Boats (12	1	7 Boat cores

AUSTRALITES FROM NNE. OF MORGAN

						Dont									
Sp. gr.	2.376 to 2.429 2.397	2.437	2.408		2.418	2.407	2.392	2.404	2.393	2.422	2.407	2.389		2.370 to 2.422	2.399
Weight (gms)	3.415 to 9.557 6.137	2.040	4.341		4.312	2.945	2.606	2.818	4 . 669	2.463	1.651	2.471	1.182	1.182 to 4.341	2.901
Flange width (mm)		11			1.5									3	
Width (mm)	11.7 to 19.9 16.0	11.4	11.5-G 8.1-W	12.0-G 7.6-W	10.4-G 6.0-W	10.2-G 8.7-W	9-8-G	10-8-C	12.5-G	10.7-G	0.6 and	7.5-W	10.2-W 8.9-G 7.6-W	8.2 to 12.5-G 6.0 to	11 · 1-W
Length (mm)	22.0 to 39.7 30.4	22.8	40.2	36.9	40.0	31.2	32.9	33.6	30.5	26.2	24.4	25.8	21.0	21.0 to	40.2
Depth (mm)	8 · 9 to 15 · 7 11 · 2	7.8	7.8-G	5 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	6.2-G	6.7 and	5.5-W	6.5-Q	8.3 and	57-0-0	W-1-9	5.2-G 6.6-G	5.9-W 5.0 and 5.2-G 4.6-W	5.0 to 9.3-G 2.5 to	7.7-W
Diameter (mm)		1												1	
Shape Type	Range Average	Canoe	Dumbbell	66	6			6	99 93	33	56	6	1	Range	Average
Collection Number		132	60	61	62	63	64	65	104	106	201	107	108		
						(%S.	L) s	llədd	lmuC	III				

11

GEORGE BAKER

	Sp. gr.	2.435	2.388	2.415	2.390	2.388 to 2.435	2.407	2.397	2.434	2.421	2·376 2·374	2.374 to 2.434	2.400
	Weight (gms)	7.731	13.644	5.414	7.012	5.414 to 13.644	8.450	8.223	7.721	6.316	4.857 3.147	3.147 to 8.223	6.053
	Flange width (mm)												
	Width (mm)	13 · 1-G 10 · 8-W	15.2-G	12·2-G 11·3-W	13 · 4- 13 · 9-G 12 · 0-W	12.2 to 15.2-G 10.8 to 14.0-W	13 · 5-G 12 · 0-W	12.6	12.2	11.2	11.9 9.7 to 10.6*	9.7 to 12.6	11.8
ttinued)	Length (mm)	47.0	49.0	36.1	42.8	36.1 to 49.0	43.7	38.8	39.7	34.3	31 · 1 28 · 5	28·5 to 39·7	34.5
[ABLE 1 (con	Depth (mm)	9.3 and 9.8-G	8 · 1 - W	9.0 and 9.5-G	8:0-W 7:9 and 9:4-G 7:2-W	7.9 to 12.8-G 7.2 to 11.4-W	10.0-G 8.8-W	11.2	11.3	10.5	10.3 $8 \cdot 1$ $8 \cdot 5*$	8.1 to 11.3	10.3
	Diameter (mm)												
	Shape Type	Dumbbell core	56 59	66 66		Range	Average	'Pea-nut'-like dumbbell	(rounded ends)	(rounded ende)	", ", ", ", ", ", ", ", ", ", ", ", ", "	Range	Average
	Collection Number	66	67	68	78			91	92	93	94 103*		
		(0)	41.7) səto		ma t		(%)	··£) !	siləd	dmu U ax	lil-tuns:	2 b

45

AUSTRALITES FROM NNE. OF MORGAN

	Collection Number	59	121 Oval (small) 122 ", (small 131 Oval 'pip-like')	Range Average	1 Oval core 34 " " 34 " " 124 " " 125 " (conical) 126 " (conical) 128 " " 129 " (conical) 130 129 " " 141 Oval core " 039 " " " 130 130 " " " 131 0" " " " 130 " " " " 131 0" " " " 142 " " " " 130 " " " " 131 " " " " 131 " " " " " 131 " " " " " " " " " " " " " " " " "
	Diameter (mm)				
TADLE I (LUI	Depth (mm)	11:52 11:55 11:77 3:20 3:20	6.0 5.6 9.5	3.2 to 18.5 11.7	238.4 238.4 213.8 238.4 212.8 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6
muneu)	Length (mm)	25.2 225.2 131.5 9.3 9.3	12·4 11·1 16·8	9.3 to 39.3 23.3	46 337 55 2337 55 19 22 22 22 22 22 22 22 22 22 22 22 22 22
	Width (mm)	8 · 6 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2	11.7 8.2 14.0	8.2 to 31.9 18.3	44.5 35.0 18.8 17.1 17.1 15.5 16.9 16.9 15.5 13.9 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15
	Flange width (mm)				
	Weight (gms)	5 - 723 5 - 328 4 - 368 0 - 733 0 - 314 0 - 314	0.975 0.521 2.171	0.314 to 28.808 7.931	72-349 39-691 57-077 58-68 4-793 3-363 4-793 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-570 7-662 8-284 8-2853 5-853
	Sp. gr.	2.427 2.427 2.427 2.429	2.397 2.393 2.401	2.380 to 2.429 2.406	2.397 2.393 2.393 2.393 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397 2.397

TABLE 1 (conti

17----

46

GEORGE BAKER

	ght Sp. gr.	09 2.411	45 2.407 55 2.407 55 2.348 64 2.358 46 2.358 86 2.388 332 2.403 332 2.403 333 2.403 332 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403 333 2.403	21 to 2:348 tu 86 2:423 12 2:395	36 2.371 36 2.371 31 2.371 31 2.371 31 2.371	14 to 2:348 to 2:437 to 2:405
	e Weig (gm	4.8(н	0.82 8.88 3.04	6.00 6.63 6.64 6.65 6.64	0 0.31 72.34 7.81
	Flang width (mm		2 (wo			1.5 t 2.6
	Width (mm)	13.4	13:5:4 13:5:4 13:5:5:4 13:5:5:4 13:5:5:4 13:5:5:5 13:5:5 15:5:5:5 15:5:5:5 15:5:5:5 15:5:5:5:	6.7 to 16.4 12.5	16.8 16.8 16.8 18.7 18.7	6.7 to 44.5 15.2
ontinued)	Length (mm)	22.0	224:5 224:5 224:5 223:6 235:6 235:6	15.0 to 37.3 22.5	23.2 16.3 to 23.2 19.8	9.3 to 49.0 25.3
TABLE 1 (C	Depth (mm)	12.2	$\begin{array}{c} 9\\ 11\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	5.5 to 16.2 10.0	15.0 15.0 19.0 17.0	2.5 to 28.4 12.1
	Diameter (mm)					12.6 to 36.5 22.0
	Shape Type	Oval 'nut-like' form	Teardrop """"""""""""""""""""""""""""""""""""	Range Average Taratron core	Range Average	Range Average
	Collection Number	95	97 98 100 1001 1104 1134 1135 1135 1135 1135 1136 1136 1136	741	148	TOTALS
	(0.7%) (0.7%) nut-like'	' IsvO m101	16 Teardrops (10.8%)	(2 Teardrop	

) one value only.) not included in average

G = gibbosity.
W = waist region.
Where two values are given for G, this means unequal gibbosities.
* The only one with marked differences in size of the two gibbosities.
† Combined for purposes of calculating averages.
(Weights and specific gravities determined by T. H. Donnelly, Nov., 1964.)

AUSTRALITES FROM NNE. OF MORGAN

	Flange Weight Specific Width Weight Specific (mm) (gms) Gravity	R 1.027 R 2.389 to 3.349 to 2.410	A (2.6) A 1.988 A 2.401	R R R	A 4.045 A 2.411	R 2.212 R 2.392 to 2.275 to 2.400	A 2·234 A 2·396	R 2.580 R 2.369 to 41.831 to 2.436	A 12.041 A 2.408 (43 spp.)	R 0.314 R 2.380 to 28.808 to 2.429	A 7.931 A 2.406	R 2.550 R 2.370 to 72.349 to 2.370	Binary and a second sec
l, J.A.	Width (mm)									8-2 to 31-9	18.3	13.9 to 44.5	000
Morga		R	V	R	<	R	V	R	V	X	V	×	
tes from	Length (mm)									9.3 to 39.3	23.3	16.8 to 46.4	
strau		K	<	~	<	X	<	2	<	×	<	~	
140 (11)	Depth (mm)	6 · 0 to 9 · 0	7.2		10·6 (broken)	7.4 to 8.2	7.8	10.0 to 27.8	16.5	3.2 to 18.5	11.7	7.9 to 28.4	
		K	~	K	<	X	<	×	<	×	<	R	-
	Diameter (mm)	12.6 to 20.2	15.9		22.5	16-4 to 16-9	16.7	15.0 to 36.5	22.6				
		~	<	×	<	~	<	~	<	~	<	~	
	Percent of Popula- tion	2.0		0.7		1 • 3		r.00	1.67	10.8		11.5	
	No. of Speci- mens	3		-		5		P.F.	;	16		17	
	Shape Type	Flanged buttons		Hollow	button (broken)	Lenses		Round	c0163	Ovals		Oval	50100

TABLE 2 Showing average values and range in values of dimensions, weights and specific gravities of 148 miscredites from Moreon S.A.

48

GEORGE BAKER

Specific Gravity	2.379 to 2.431	2.395	2.376 to 2.429	2.397		2.437	2.370 to 2.422	2.399	2.388 to 2.435	2.407
	R	4	Ř	4	Ч	<		4	2	4
Weight (gms)	0.772 to 12.236	3.233	3.415 to 9.557	6.137		2.040	1.182 to 4.341	2.901	5.414 to 13.644	8.450
	Ř	4	1 K	≮	R	\triangleleft		4	L R	<
Flange Width (mm)		(2.3)						(1 · 5)		
		4	≃	∢		4				4
Width (mm)	8.9 to 19.0	13.3	11.7 to 19.9	16.0		11.4	8.2 to 12.5 (gibbosity) 6.0 to 11.1 (waist)	10·6 (gibbosity) 8·5 (waist)	$\begin{array}{c} 12\cdot2\\ \text{to } 15\cdot2\\ (\text{gibbosity})\\ 10\cdot8\\ \text{to } 14\cdot0\\ (\text{waist})\end{array}$	13.5 (gibbosity) 12.0 (waist)
		4	2	4	24	4	×	∢	¥	<
Length (mm)	15.1 to 39.2	23 · 1	22.0 to 39.7	30.4		(22.8)	21.0 to 40.2	31.2	36.1 to 49	43.7
		<	24	4	12	∢	l K	4	¥	<
Depth (mm)	5.0 to 13.8	7 · 0	8.9 to 15.7	11.2		(7 · 8)	to 9.3 (gibbosity) 2.5 to 7.7 (waist)	6.8 (gibbosity) 5.3 (waist)	$\begin{array}{c} 7.9\\ \text{to } 12.8\\ (\text{gibbosity})\\ 7.2\\ \text{to } 11.4\\ (\text{waist})\end{array}$	10.0 (gibbosity) 8.8 (waist)
-	24	∢	$ \simeq$	∢	12	∢	X	4	X	4
Diameter (mm)										
								_ √		
Percent of Popula- tion	12.2		4.7		E O		7.5		2.7	
No. of Speci- mens	18		7		-	T	=		4	
Shape Type	Boats		Boat cores			Calloc	Dumbbells		Dumbbell	cores

TABLE 2—continued

49

AUSTRALITES FROM NNE. OF MORGAN

Shape Type	No. of Speci- mens	Percent of Popula- tion		Diameter (mm)		Depth (mm)		Length (mm)		Width (mm)		Flange Width (nnm)		Weight (gms)		Spec	ific ity
"Pea-nut"- like dumb-	5	3.4	2 N		×	8·1 to 11·3	2	28.5 to 39.7	X	9.7 to 12.6	2		2 2	3.147 to 8.223	1 ×	to 2	· 374
DellS			<		<	10.3	<	34.5	×	11.8	<		<	6.053	2	2	.400
Oval "nut-	-	0.7	R		1 ×		×		2		2		1 a		i a		
like torm			<		1	12.2	V	22 0	A	13.4	<		4	4.809	<	5	.411
Teardrops	16	10.8	R		R	5.5 to 16.2	X	15.0 to 37.3	R	6.7 to 16.4	2		1 X	0.821 to 8.886	12	to 2	· 348
			<		<	10.0	<	22.5	<	12.5	<	(1 · 8 worn)	1	3.042	1	C1	.395
Teardrop	2	1.3	X		1 ×	15.0 to 19.0	X	16.3 to 23.2	R	16.8	2	to 20.5	1 ×	4.636 to 8.651	12	to 2	-371 2-411
cores			<		<	17.0	V	19.8	<	18.7	<		<	6.644		2	.391
TOTALS	148	100	X	12.6 to 36.5	1 ×	2.5 to 28.4	X	9.3 to 49.0	X	6.7 to 44.5	2 2	1.5 to 2.6	X	0.314 to 72.349		to 2	.348
			4	22.0	<	12.1	Y	25.1	V	15.2		2 · 1		7.817	<	101	.405
	-	R = Ran	l lgc i	n values.	- V	= Arithmet	ic m	can. Ro	punc	forms $= 50$	0,00	clongated for	ns =	= 50%.			

GEORGE BAKER

TABLE 2-continued

AUSTRALITES FROM NNE. OF MORGAN

are statistically significant, comparison between the percentages of shape types represented in each area shows certain marked differences (Table 3). 'Classifiable' means specimens other than nondescript fragments and fragments for which the original shape type is rather uncertain.

TABLE 3

Comparison	of	percentages	of	different	shape	types	of	australites	from	(a)	near
		Morga	1, (1	b) Florieta	on, and	(c) Mu	lka,	S.A.			

	Percer	ntage of shape	types
Shape type	(a) 16 miles NNE. of Morgan (%)	(b) Florieton* (%)	(c) Mulka† (%)
Flanged buttons and/or buttons with flange remnants Hollow forms (broken and unbroken) Button cores, lenses and larger round scores Spherical forms	$ \begin{array}{c} 2 \cdot 0 \\ 0 \cdot 7 \\ 31 \cdot 0 \end{array} $	$ \begin{array}{c} 0 \cdot 4 \\ 0 \cdot 0 \\ 64 \cdot 9 \\ 0 \cdot 7 \end{array} $	10.0 1.9 27.8
Ovals and oval cores Boats and boat cores Canoes Dumbbells and dumbbell cores Teardrops and pear-shaped forms Club-shaped forms Cylindrical forms	$ \begin{array}{c} 23 \cdot 0 \\ 16 \cdot 9 \\ 0 \cdot 7 \\ 13 \cdot 6 \\ 12 \cdot 1 \end{array} $	$9 \cdot 0 \\ 12 \cdot 4 \\ 2 \cdot 1 \\ 3 \cdot 1 \\ 6 \cdot 2 \\ 0 \cdot 1 \\ 1 \cdot 1 $	$21 \cdot 1 23 \cdot 0 1 \cdot 1 10 \cdot 3 4 \cdot 8$
TOTAL	100.0	100.0	100.0
Number of specimens	148	812‡	261§

* Generalized from Mawson's (1958) list of shape types.

† Generalized from Baker's (in press) list of shape types.
‡ Total number collected was 1475 specimens, but 663 of these are only fragments of australites and not classifiable into specific shape groups.

§ Total number investigated in detail was 275 specimens, but 14 of these are fragments of australites (a total of 689 specimens were inspected in five different collections of australites from Mulka (Baker, in press)).

As for other concentration centres in the vast australite strewnfield, there is no apparent reason why the Morgan and Florieton areas, which are only some twenty miles apart, show such significantly different proportions of the more common of the shape types which constitute the bulk of the australite populations. Taken over the two million square mile strewnfield as a whole, round forms tend to be $1\frac{1}{2}$ to 3 times as abundant as elongated forms, as shown in Table 4.

GEORGE BAKER

TABLE 4

Ratios of the main australite shape types (Round/elongated)
3/1
2-49/1 (a)
2.4/1
1 94/1
1.83/1(a)
1-83/1(a)
1.81/1(c)
1 43/1(d)
1-33/1(b)
0=51/1
0 5/1

Ratios of round to elongated forms of australites from various concentration centres in the Australian strewnfield

(n) Calculated from Baker's tables (1956). (b) From Baker (1964). (c) From Baker (1959b). (d) From Baker (1955).

Apart from variations in the percentages of the various shape types from Morgan to Florieton, and from these areas to Mulka, as shown in Table 3, there are also considerable variations between the overall percentages of round forms to elongated forms as shown in Table 5.

TABLE 5

Variations in populations, specific gravity values, and weights of australites from (a) near Morgan, (b) Florieton, and (c) Mulka, S.A.

	Me	(a) Organ	Flo	(b) ricton	(c) Mulka*		
	Round forms	Flongated forms	Round forms	Elongated forms	Round forms	Elongated	
Number of specimens	50	98	536	276	107	168	
Percentage of total number	34%	66°,	66°,	34%	39%	61 %	
Average weight in grams	10.90	6.19	3.87	3.62	3.53	4.50	
Average specific gravity	2.407	2.400	(-)	(-)	2.434	2.427	

 (-) no specific gravity determinations listed in Mawson's (1958) paper.
 * from Baker (in press) – the obviously hollow specimens have been excluded from the calculations of specific gravity.

There are also marked differences in the weight ranges and average weight values as between the various shape groups represented in each of the Morgan and Florieton areas (Table 6).

AUSTRALITES FROM NNE. OF MORGAN

TABLE 6

		Morgan	, S.A.	Florieton, S.A.			
	Shape type	Range in weight (gms)	Average weight (gms)	Range in weight (gms)	Average weight (gms)		
Round forms	Flanged buttons Hollow button (broken) Lenses Round cores Spherical forms	1.03 to 3.35 2.12 to 2.28 2.58 to 41.83	$ \begin{array}{r} 1 \cdot 29 \\ 4 \cdot 05 \\ 2 \cdot 23 \\ 12 \cdot 04 \end{array} $	1.94 to 3.01 0.18 to 5.92 1.01 to 12.02 8.91 to 9.90	$ \begin{array}{r} 2 \cdot 51 \\ 1 \cdot 40 \\ 5 \cdot 31 \\ 8 \cdot 84 \end{array} $		
Elongated forms	Ovals Oval cores Boats Boat cores Canoes Dumbbells Dumbbell cores "Peanut-like" forms Teardrops & pear-shaped forms Teardrop cores Club-shaped forms Cylindrical forms	$\begin{array}{c} 0.31 & \text{to } 28.81 \\ 2.55 & \text{to } 72.56 \\ 0.77 & \text{to } 12.24 \\ 3.42 & \text{to } 9.56 \\ 1.18 & \text{to } 4.34 \\ 5.41 & \text{to } 13.64 \\ 3.15 & \text{to } 8.22 \\ 0.82 & \text{to } 8.89 \\ 4.64 & \text{to } 8.65 \end{array}$	$7 \cdot 93 \\ 12 \cdot 46 \\ 3 \cdot 23 \\ 6 \cdot 14 \\ 2 \cdot 04 \\ 2 \cdot 90 \\ 8 \cdot 45 \\ 6 \cdot 05 \\ 3 \cdot 04 \\ 6 \cdot 64 $	0.60 to 21.26 1.11 to 15.00 0.27 to 15.35 0.50 to 6.69 0.76 to 4.05 0.30 to 8.40 2.39 to 14.78	$ \begin{array}{r} 6.93 \\ 4.83 \\ 2.86 \\ 2.73 \\ 2.61 \\ 2.07 \\ 7.80 \\ 6.72 \\ \end{array} $		
Over	all weight range	0.314 to 72.349		0.18 to 21.26			
Over	all average weight		7.817		3 · 784		
Tota	l weight	1,156.855		3,073			

Comparison of weight ranges and average weight values of different shape groups of australites from near Morgan and from Florieton, S.A.

Table 6 reveals that round cores, ovals, oval cores, dumbbell- and teardropshaped groups each have a greater weight range and significantly higher average weight from the area 16 miles NNE. of Morgan than from Florieton. Flanged buttons have a higher average weight from Florieton than from near Morgan, but numbers in this shape group are low at each locality and not statistically significant. Lenses have a higher average weight from near Morgan, although heavier-weight and lighter-weight individual specimens of lenticular side aspect occur at Florieton. However, numbers are not statistically significant for lenses from near Morgan, whereas they are for lenses from Florieton. Forms that are boat-shaped in plan aspect have a greater weight range from the Florieton area, but a greater average weight from 16 miles NNE. of Morgan, and there are statistically significant numbers of specimens in this shape group for both areas.

Overall, the australites are heavier from near Morgan than from Florieton in virtually all of the different shape groupings, and the degree of weathering is not significantly different for the specimens from these two close concentration centres. The Florieton specimens (812 classifiable into specific shape types among a total of 1475 finds) have a total weight of approximately 3073 gms as calculated from Mawson's table (1958, p. 163) showing the weights of specimens in the separate shape groups. This is 2.66 times greater than the total weight (1157 gms) of

GEORGE BAKER

specimens constituting the Thamm collection from Morgan, and the weight range of 0.18 gms to 21.26 gms is significantly lower than from Morgan, while the average weight of 3.784 gms is 2.06 times lower than for the Morgan specimens. With a weight range of 0.46 gms to 22.7 gms and an average weight of 4.1 gms, the Mulka specimens fall between those from near Morgan and from Florieton respectively. The 275 specimens described from Mulka have a total weight of 1136 gms (Baker, in press), but this figure is reduced to 1091 gms when the weight of the 14 fragments present is deducted.

Specific gravity values were not given for the Florieton specimens described by Mawson (1958), hence no average specific gravity can be cited for comparison with the average specific gravity of 2.405 for the australites from near Morgan. The average specific gravity (2.405) for the 148 specimens from Morgan is significantly lower than that (2.430) from Mulka, 390 miles away WNW. of Morgan (Baker, in press).

Sculpture patterns and structures of australites near Morgan, S.A.

Like most australites recovered from the semi-arid to arid regions, the sculpture patterns of the australites from 16 miles NNE. of Morgan are dominated by the effects of terrestrial weathering. All specimens are relatively strongly abraded, occasionally some are fractured, while some are pitted and etched on all surfaces including fracture surfaces. Abrasion has resulted largely from physical erosion by wind-borne, dried sandy soils. Pitting and etching have resulted largely from chemical erosion by soil etchants during wetter periods of the geologically recent past and the rather infrequent rainy seasons of the present. In general, the etching is an earlier event in the process of terrestrial erosion and occurs in soils. Abrasion is mainly a later development after release of the tektites by soil deflation. Specimens swept or gravitated into recent sedimentary horizons (e.g. as in clay pans) may be subjected to further solution etching after various degrees of abrasion have occurred.

The worn character of all of the specimens is such that although most shape types are still recognizable, there is generally little or nothing preserved of the aerodynamical sculpture pattern. Few flow ridges of the ring wave pattern that was produced during the later stages of high velocity flight are still evident, and these are invariably rather indistinct, worn-down stumps of the original flow ridges (see Table 7 for specimens with some remnants of the ring wave pattern).

Very few specimens still retain the circumferential flange structure (Pl. 9, fig. 1) or remnants thereof (Pl. 11, fig. 19), and many have been so exfoliated on their front surfaces and/or around their perimeters that the sub-surface, strained, aero-dynamically heated zone of the anterior surface region (Baker, 1963) has been spalled away to different degrees, sometimes completely or nearly so where the remnant conical core types of specimens are concerned (e.g. Pl. 10, fig. 26), and where flaked equatorial zones are prominently present around the peripheries of the specimens (e.g. Pl. 11, fig. 6). Flow swirls are occasionally evident on the posterior surface of some of these australites (Table 7) and when present are only poorly preserved or very indistinct (Pl. 9, fig. 45; Pl. 10, fig. 1-3).

One effect of the relatively advanced degree of terrestrial erosion is that the weights of the specimens as recorded in Table 1 are inevitably much lower values than the landing weights and the average weights given in Table 2 are thus minimal values. Specimens with sizable internal bubble cavities have had the outer walls of parts of the bubbles penetrated and removed by erosion, leaving relatively deep crater-like depressions with dulled and eroded walls (e.g. Pl. 9, fig. 3; Pl. 10, fig. 6,

S.A.
Morgan,
from
australites
148
of
Features
Surface

TABLE 7

Remarks	Sub-vitreous lustre from natural solution etch pol- ishing	Smoothed and dulled by abrasion	Smoothed and dulled by abrasion	Etch pits and vague flow lines on all surfaces, best on posterior surface	? small gas blister on pos- terior surface	Vitreous recent fracture sur- face at one side of pos-	terior surface Old, lightly etched fracture from anterior surface	Flow lines reasonably well revealed	Etch pits and 'orange-peel'	Fold-like flow line pattern and some etch pits
Flow swirls on posterior surface	one	Indistinct on posterior surface			Fold-like flow lines on posterior surface		One—17 × 22 mm on posterior surface			
Surficial bubble craters	1-5.4 mm across 3.1 mm deep on posterior surface				4.2 × 3.3 mm on anterior surface					
Flow ridges on anterior surface										
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	10.8	10.9	12.4	11	10.5	6.6	∞	11.4	10.9	8 · 8
Plate Number	II, 2	III, 1	II, 1	III, 2	III, 3	III, 5	П, 3	I, 38	I, 43	I, 42
Shape Type	Oval core	Round core	Oval core	Round core	66	66	Oval core	Round core	66 66	66 66
Collection Number	1	2	3	4	ŝ	9	L	80	6	10

Plates I-IV in Table 7 = Plates 9-12 elsewhere.

AUSTRALITES FROM NNE. OF MORGAN

56				GEOR	GE BAK	ER						
Remarks	Anterior surface smoothed by abrasion; posterior sur-	pattern Part of former rim pre-	equatorial zone Flaked equatorial zone un-	Fold-like flow lines, some etch pits, side aspect ap-	proaching conical (1-13 above, the side aspect = bung-like) Abraded smooth on most surfaces	Some etch pits; parts ab- raded smooth side asmeet	approaching conical Fold-like flow lines; some	etch pits Old, dulled conchoidal frac- ture to one edge of pos- terior surface	Smoothed; plus some etch	pits Smoothed; plus some etch	pits and a few flow lines Small etch pits; several bub-	ble pits 0.5 to 2.5 mm diameter on both surfaces are up to 0.02 mm deep
Flow swirls on posterior surface												
Surficial bubble craters											one; = 0·34 mm	diameter; 0-17 mm deep
Flow ridges on anterior surface												
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	8.3	9.8	8.2	8.2	6.6	9.8	8.7	11.7	9.2	8.6	8.4	
Plate Number	I, 41	I, 39	I, 36	I, 37	I, 26	I, 35	I, 40	I, 22	I, 27	I, 31	I, 29	
Shape Type	Round core	a 8 8	59	66 66	6.6		66 66	33	66 66			
Collection Number	11	12	13	14	15	16	17	18	19	20	21	

- -

<u> </u>
0
~
22
* Prod.
-
22
6
2
0
- 1
- 1
-
20
- HH
1
-
-
1
-
-

-

		110	JOIR	nu	LLO	LIC	OW	TATAE:	. Ur	INIO	KOAI	N.				Э
Remarks	Etched 'collisional bruise'	Round core slightly frac- tured on one side. Smooth-	ed posterior surface Flow lines and some etch	Etch pits and grooves; plus	A LEW LIUW LILLES Abraded, few pits; con-	one edge of posterior sur-	Abraded, few pits and flow	Abraded, few pits Conical core; worn; flow	Worn; fine etch pits and	Abraded; few flow lines and etch pits. Ant. surf. [†] ap-	proaching flatness Abraded conical core with	flaked equatorial zone in- distinct. Etch pits and flow	lines Posterior surface almost flat	Some etched flow lines and	Complex, fold-like pattern	or now miles on posterior surface; etched
Flow swirls on posterior surface		16 mm across on posterior	surface (worn)					Indistinct on	posterior surface							
Surficial bubble craters										one $= 0.37 \text{ mm}$ on f.e.z.*	(unusual feature) 0.2 mm deep					
Flow ridges on anterior surface																
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	9.5	8.5	7.8	7.5	7.2		0.9	7.3 8.7	12.8	6.4	C.11	7	11.0	6.9	7.9	
Plate Number	I, 25	I, 23	I, 32	I, 30	I, 33		I, 34	I, 18 I, 28	I, 24	I, 16	I. 19		I, 15	II, 21	I, 21	
Shape Type	Round core	c6 66	66 66	39 25	ee ee			99 99 99 99				66		Oval core	Round core	
Collection Number	22	23	24	25	26		27	28 29	30	31	32		33	34	35	

AUSTRAL TTTC

			G	EOF	RGE	BAKE	R				
Remarks	Complex, fold-like pattern of flow lines on posterior surface and some on an-	terior surface; etched Abraded to a degree after previous natural solution	etching Smoothed by abrasion, few	A few bubble pits and etch	Smoothed by abrasion, pos-	deeply etched flow lines Smoothed by abrasion, pos- terior surface with pits and	a few flow lines Abraded conical core; pits and few etched flow lines	on posterior surface Conical core abraded; fine etch pitting, few flow lines,	? 'collisional bruises' Smoothed by abrasion; fine	etch pits, few flow lines Fold-like pattern of flow lines on posterior surface;	etch pits of varying size and pattern Also other flow lines in fold-like patterns on pos- terior surface; flow lines on anterior surface; etch pits on both
Flow swirls on postcrior surface											22.3 mm across on posterior surface
Surficial bubble craters											
Flow ridges on anterior surface											
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	6.8	8 · 6	5.6	7 · 0	5.2	5.8	6 . 7		12.7	10.4	5·6
Plate Number	I, 20	I, 11	I, 17	I, 12	I, 9	I, 10	I, 13	I, 14	I, 46	III, 4	I, 45
Shape Type	Round core		66	55 55	6.6	44			66 66	64	2
Collection Number	36	37	38	39	40	41	42	43	44	45	46

		AUSTR	ALIT	ES F	ROM	NNE.	OF M	ORGA	N	
Remarks	Flaked equatorial zone in- distinct towards anterior surface. Collisional bruise	marks; few flow lines; ab- raded after natural etching Flow lines, etch pits and etch grooves	Complex fold-like pattern of flow lines, etch pits and	etch grooves common Some flow lines, etch pits	Abraded after etch pitting and etch grooving natur-	ally. Small conchoidal fracture (old) at one end Other flow lines and etch pits on all surfaces	Fracture fragment removed from one side: complex	flow lines and pits Flaked equatorial zone in- distinct. Smoothed by ab-	teston. A tow now much etch pits and exposed in- ternal bubbles Flaked equatorial zone in- distinct. Smoothed by ab- rasion and etching. Fine	flow lines and etch pits Flaked equatorial zone in- distinct. Few flow lines, several etch pits; generally smoothed by abrasion
Flow swirls on posterior surface		$One = 20.3 \times 15.7 \text{ mm on}$	posterior surface			$One = 15 \cdot 3 \times 15 \cdot 9 \text{ mm on}$	posterior surface		One = $13.0 \times 6.6 \text{ mm on}$	
Surficial bubble craters										
Flow ridges on anterior surface										
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	0.6	6.7	0.6	7.8	7.8	7.3	7 · 0	6.5	6.2	5.7
Plate Number	I, 44	II, 4	II, 5	II, 7	11, 6	II, 8	II, 11	II, 12	111, 9	III, 13
Shape Type	Round core	Broad oval	66 66	Oval	6	5	56	Broad oval	Boat core	3
ollection	47	48	49	50	51	52	53	54	55	56

TABLE 7-continued

E1

				GEORG	E BAK	ER			
	Remarks	Finely etch-pitted on all surfaces. Verv few flow	lines in evidence Flaked equatorial zone in- distinct on one side. Com- plex fold-like flow lines on posterior surface. Etch pits	and areas smoothed by abrasion Complex fold-like pattern of fine flow lines and few etch pits. One exposed in-	ternal bubble = 0.14 mm across, 0.03 mm deep Smoothed by abrasion. Fine etch pits; longitudinal flow	lines on anterior surface A few flow lines and etch pits	Etch polish and longitudi- nal flow lines, few etch pits	Smoothed by abrasion; few remnants of former etch	pits and flow lines One end conchoidally chip- ped. Longitudinal flow lines
	Flow swirls on posterior surface		One 7 2 X 3 6 mm on posterior surface						
011111110 19	Surficial bubble craters					 5 5 across 0 9 deep on posterior surface 	3.9 across 0.9 deep on anterior surface		
I VDFC /	Flow ridges on anterior surface				worn away	:	Faint remnants on waist	Vaguely concentric	remnants worn away
	Nature of peri- phery: depth of flaked equa- torial zone where present (mm)	5	κ. ν.	6.F	Rim present	:	Flange rennants 1-5 mm	Winute flange rennants	Rim present
	Plate Number	II, 15	111, 10	11. 14	IV. 4	IV. 6	IV. 5	IV, 11	IV, 8
	Shape Type	Oval	Boat core	Oval	Dumbbell	÷	£	•	6
	Collection Number	57	\$	59	09	61	62	63	64

E 7-continue

7-continued
TABLE

Remarks	Longitudinal flow lines on posterior surface and some on anterior surface. Some	Smoothed by abrasion; few Smoothed by abrasion; few etch pits and flow lines Smoothed by abrasion; few etch pits and flow lines; occasional lunate collision-	al bruise-marks Smoothed by abrasion; finely etch-pitted; few flow	lines on anterior surface Longitudinal, somewhat contorted flow lines; two exposed internal bubbles on anterior surface 0.23	Finely etch-pitted with few flow lines Finely etch-pitted; few flow lines. Posterior surface flat	(slightly concave to the feel but scarcely visible) Etch-pitted and etch-groov- ed; few flow lines	Abraded; remnants of longi- tudinal flow lines, few etch pits. Small conchoidal chip from one edge near ex- posed small internal bub- ble 0.17 mm across
Flow swirls on posterior surface							
Surficial bubble craters							
Flow ridges on anterior surface	worn remnants on waist			worn concentric	worn away	worn, vague, ?	concentric worn, vague ridges
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	Rim present	6.8 on gibbosities 8.0 on gibbosities	6.5	Minute remnants of flange base	rim present	Minute flange remnant on	one side Rim present
Plate Number	IV, 9	IV, 3 IV, 1	IV, 7	III, 18	Ш, 29 Ш, 22	III, 25	III, 27
Shape Type	Dumbbell	Dumbbell core ,, "		Boat		23	6
Collection Number	65	66	68	69	70 71	72	73

AUSTRALITES FROM NNE. OF MORGAN

		GEC	DRGE B	AKER	<pre></pre>			
Remarks	Ends taper; longitudinal flow lines	Etch pits and longitudinal flow lines. Facets at one end due to chipping (fol-	lowed by etch-pitting) Smoothed by abrasion. Originally could have been a canoe, but too worn for	certainty Contorted flow-lines on posterior surface; a few	etch pits are very minute Visually dumbbell-shaped in side aspect only. Com- plex flow-line pattern on	Posterior surface, few pits Finely etch-pitted and par- tially smoothed by abra-	ston Complex, fold-like flow pattern on posterior sur- face with long axes paral- lel to long axis of form. Also on anterior surface. Etch pits and grooves on both surfaces	
Flow swirls on posterior surface								
Surficial bubble craters								
Flow ridges on anterior surface				clockwise spiral;	worn		worn away	
Nature of peri- phery: depth of flaked equa- torial zone where present (mm)	2		:	minute, thin flange	remnants 4-8 on one gibbosity			
Plate Number	III, 28	MI, 30	111, 26	111, 31	IV. 2	111 , 11	III, 16	
Shape Type	Boat (Canoe- like appear- ance in one	Boat	;	:	Dumbbell core	Boat	:	
Collection Number	74	75	76	77	78	79	80	

-
ea
n
i.
n
8
Ĭ
1
1.
<u> </u>
BI
2

Remarks	Abraded; smooth flaked equatorial zone and an- terior surface. Remnant etch pit pattern on pos- terior surface. Conical in	end-on aspect Few flow lines and etch pits on both surfaces. An- terior surface mainly	Flow lines and few etch pits on both surfaces		Flow lines and few etch	Conical in end-on aspect. Smoothed by abrasion; few etch nits	Posterior surface pitted with few flow. lines. An- terior surface smoother	Smooth, plus fine flow lines, very rare pits, several 'saw-cuts' = etch grooves 0.3 mm wide. Concave etched fracture surface at	one end complex fold-like pattern of flow lines on both sur- faces
Flow swirls on posterior surface								$0.2 \times 0.1 \text{ mm}$ to 7.5×6.3 mm on posterior surface	
Surficial bubble craters									Two as figure 8 5 mm \times 3 \cdot 2 mm, 1 \cdot 2 mm deep
Flow ridges on anterior surface		Vague remnants concentric	Vague remnants wavy	ference in equatorial regions			Clockwise ridges perceptible	7 closely spaced, concentric, worn	Indistinct remnants
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	6.9	Minute remnants of flange along	Rim present, flange stumps showing in	spors	7	7.1	Rare stumps of former flange left	Remnants of flange stumps around edges	56 29
Plate Number	III, 15	III, 14	III, 17		II, 13	III, 23	111, 20	II, 17	II, 18
Shape Type	Boat core	66 66	Boat		Oval core	Boat core	Boat	Oval	6
Collection Number	81	82	83		84	85	86	87	88

AUSTRALITES FROM NNE. OF MORGAN

63

E2

L.				GEOI	RGE F	BAKER				
Remarks	Smoothed by abrasion, fine- ly pitted (worn down etch	Very complex flow-line pat- tern on both surfaces; few	Waist-like region = 10.4 × 10.8 mm thick. Sur-	face with some pits and 'collisional bruise-marks' Thinner end $= 10.9 \times 10.2$ mm. Few flow lines	tend to be longitudinal. Several pits = ? exposed internal bubbles (no slight	constriction in waist) Abraded smooth with rem- nants of pits showing. No perceptible constriction of	Longitudinal to fold-like flow lines, few pits and 'collisional bruise-marks'		Fold-like flow lines and occasional etch pits and	Smoothed by abrasion; few poorly marked flow lines showing, but several pits (etch pits and ? exposed internal bubbles)
Flow swirls on posterior surface										
Surficial bubble craters			One = 3.7 × 1.7 mm	other = 3.7 × 2.7						
Flow ridges on anterior surface							Worn longi- tudinal ridges	converge to pointed ends		
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)		Rim present, rounded by	wcal	5.3 (very worn)		4.0 (indistinct)				5.6 (indistinct)
Plate Number	III, 21	111, 7	IV, 18	IV, 17		IV, 19	IV, 20		IV, 21	111, 8
Shape Type	Boat	e.	'Peanut' type	(rounded ends) "			'Peanut' type (pointed ends)		Oval 'Nut-like' form	Boat core
Collection Number	89	06	91	92		93	94		95	96

Remarks	Longitudinal flow lines con- stricting into tapered end. Tail of tear broken off and end worn Pit 0.15 mm across and 0.2 mm deep on anterior surface. Smoothed by ab- rasion, few pits and flow lines rare small provise	Flow lines in tail crowd into the attenuation. Rad- ial star-like (12 rays) pat- tern of etch grooves in centre of posterior surface	of gibbosity Smoothed by abrasion; flow lines occasionally worn, trend into the attenuation. Few pits from earlier	etching process Parts of flow ridges tend to show spiral clockwise trend. Partly smoothed by abrasion; few etch prooves	and pits Smoothed by abrasion; few flow lines and occasional pits (etch pits and ex- posed small bubbles)			
Flow swirls on posterior surface		$8.2 \times 6.2 \text{ mm on}$ posterior surface						
Surficial bubble craters	6.1 mm across on posterior surface and 4.9 mm deep							
Flow ridges on anterior surface		Vague remnants of concentric ridges		Fairly clear concentric, wrinkled on	gibbosity			
Nature of peri- phery; depth of flaked equa- torial zone where present (mm)	4.1 to 1.3 mm deep Kim present 5.0 on gibbosity‡	Rim present	4.7 on gibbosity‡	Flange remnant 2 mm wide at end	of gibbosity Rim present			
Plate Number	IV, 28 IV, 27	IV, 29	IV, 30	IV, 31	IV, 35			
Shape Type	Teardrop "	(lustrous from etching)	6	6	£			
Collection Number	97 98	66	100	101	102			

 $\ddagger F.e.z.$ at broad end of gibbosity \rightarrow surface worn and may be original structural feature rather than a f.e.z. caused by later weathering on earth's surface. (F.e.z. = flaked equatorial zone.)

65

AUSTRALITES FROM NNE. OF MORGAN

6			GE	EORGE BAKE	R		
	Remarks	Smoothed by abrasion; few flow lines trend to pointed ends. Few pits; some flow lines overdeepened and groove-like	Complex pattern of fold- like flow lines on both surfaces, also a few pits (etch pits and exposed	small bubbles) Anterior surface evenly curv- ed without waist depres- sion occurring; smoothed by abrasion. Flow lines not distinguishable. Fine etch pits and few bubble	puts. Smoothed by abrasion; waist depression scarcely perceptible on anterior surface. Fine etch pits and	Smoothed by abrasion; remnant etch pits and rare flow lines showing. Waist depression imperceptible	Com anterious surface Complex pattern of twisted flow lines trending gener- ally length-wise. No waist depression evident on an- terior surface
	Flow swirls on posterior surface						
	Surficial bubble craters	Etched-out crater = 6 · 1 × 4 · 5 mm, and 0 · 1 mm deep	4 · 4 mm × 3 · 8 mm, and 0 · 07 mm deep	surtace			
	Flow ridges on anterior surface	Very vague remnants		Vague concentric			
	Nature of peri- phery; depth of flaked equa- torial zone where present (mm)			Worn rim present		Worn rim present and small stump of flange	Worn rim present
	Plate Number	IV, 12	IV, 10	IV, 13	IV, 15	IV, 14	IV, 16
	Shape Type	Dumbbell (approach- 'Peanut' type with pointed	Dumbbell (slightly distorted)	Dumbbell	4		"
	Collection Number	103	104	105	106	107	108

Con 1
a
e
12
.5
1
2
0
ý
- I.
r.
Ē
E C
1
F

	AU	STRALITE	S FROM N	NE. OF MORG	AN	67
Remarks	Tail (probably similar to No. 110) broken off. At- tenuated end slightly re- curved-smoothed by ab-	rasion, a rew polynomial flow lines; few pits Longitudinal tapering flow lines well-defined; few etch pits. Fractured end as etched as other surfaces	Radial flow lines on anter- ior surface. Etch pits and, across diameter, flow lines on posterior surface of core. Dull etch varnish; etch pits on flanges	Cavity approximately 15 mm diameter, worn through on posterior sur- face thinner wall. Cavity wall flow lined and etch- pitted; Radial to complex flow lines on anterior sur-	Approximately circular in end-on aspect—smoothed by abrasion; few etch pits, twisted flow lines not plainly shown. Tail end fractured and rounded	Tail end fractured and wern. Sculpture pattern = mainly etch pits and bub- ble pits up to 2.0 mm across
Flow swirls on posterior surface				Remnants of swirl 16 mm across on posterior surface		
Surficial bubble craters			Worn exposed internal pit on anterior surface	Worn opening of cavity 13.8 mm across		
Flow ridges on anterior surface	Worn away		Worn, but discernible as anti- clockwise spiral	Worn, but irregularly anticlock- wise spiral		
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	2.7 to 4.6 deep	Rim relatively sharp		Worn stumps of flange band left	3 small facets in end-on view of gibbosity = probably fracture	Tacets
Plate Number	IV, 26		I, 1 and 2	I, 3 and 4	IV, 22	IV, 23
Shape Type	Long teardrop	Long tail of large teardrop	Flanged button (1/11 of flange missing)	Worn, broken, hollow button	Teardrop	ŝ
Collection Number	109	110	111	112	113	114

AUSTRALITES FROM NNE. OF MORGAN

Remarks	Complex fold-like flow line pattern on both surfaces;	rew etch pits Across diameter, flow lines on posterior surface and on anterior surface; few	etch pits Flow lines and occasional etch pits on both surfaces	Form relatively flat, with few flow lines and fine etch pits	Several etch pits and a few flow lines (some pits = possibly exposed bubbles	up to 1.1 mm across) Few flow lines and minute etch pits	Smoothed by abrasion, few remnant etch grooves and rare etch pits	Smoothed by abrasion, few remnant etch grooves and rare etch pits
Flow swirls on posterior surface	$8 \ 0 \times 5$ 2 mm on posterior surface							
Surficial bubble craters						6 mm across, 0 5 mm deep on posterior surface	3 5 mm across, 0 8 mm deep on posterior surface	
Flow ridges on anterior surface	Few, worn, concentric	Anticlock- wise spiral (worn)	Concentric (worn)					
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	Flange (thin, broken)	Rim present (worn)				Rim present (worn)	22	
Plate Number	III, 19	Ι, 5	I, 7	II, 32	I, 8	II, 34	II, 31	II, 33
Shape Type	Boat with flange remnants	Lens (probably originally a hitton)	Button with 2 minute remnants of flange	Stump Small oval with irregular outline	from erosion Button with very minute remnants	of flange of flange stumps Small oval with worn bubble	crater Small oval with small worn bubble	crater Small oval ('pip-like')
Collection Number	115	116	117	118	119	120	121	122

68

GEORGE BAKER

	AUS	TRALITES	FROM	NNE. C	F MO	RGAN		6
Remarks	Complex fold-like flow line pattern on gibbosity; flow lines trend into attenuated end. Shows high etch	lustre Contorted flow-lines, some etch pits on posterior surface. Other surfaces smoother but finely etch- pitted	Smoothed by abrasion; sev- eral etch pits and exposed	oucoues as pus, our rew flow lines evident Finely etch-pitted, some- what abraded, few flow	lines Abraded, but with remnants of etch pits (worn) and flow lines from previous	Few flow lines; several pits (small etch pits and larger bubble pits up to 1.5 mm	across and shallow) Abraded, but with flow line, flow groove and etch pit remnants	
Flow swirls on posterior surface								
Surficial bubble craters							One = 4.6×4.0 on fracture surface at one edge(1.0 mm deep)	
Flow ridges on anterior surface	Worn away							
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	Small remnant of thin flange	7.0	5.5	6.1		0.7	5.6	
Plate Number	IV, 37	II, 28	III, 24	П, 23	IV, 32	III, 29	II, 20	
Shape Type	Small teardrop	Oval conical core (Shape due to	erosion)	Eroded oval core	Teardrop	Oval core (conical)	Oval core	
Collection Number	123	124	125	126	127	128	129	

69

70			GEORGE B.	AKER		
Remarks	Smoothed by abrasion, but showing one or two rem- nant flow grooves, several etch pits and 'collisional	bruise marks' Flow lines and etch pits on both surfaces	Attenuated ends = 2.3 and 2.7 mm wide, but are broken. Complex flow line pattern on both surfaces, flow lines trend into the	attenuations; few etch pits Flow ridges and etch pits on posterior surface, etch	pits on anterior surface Abraded; few remnant flow lines and etch pits. Attenu- ated end broken and worn:	end of gibbosity with frac- ture facet Complex, fold-like pattern of flow lines trend into attenuated end. Several fine etch pits on both sur- faces
Flow swirls on posterior surface						
Surficial bubble craters						
Flow ridges on anterior surface		Worn and vague but discernible as anti-	spiral spiral Longi- tudinal, worn, wrinkled in	equatorial regions		Vague remnant around stagnation point is concentric
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	5.6	Small worn remnant of flange stump	Worn, narrow zone (0·1 mm)	Worn rounded rim	Rim present	Rim present and rare remnant stump of flange
Plate Number	II, 27	II, 30	III, 32	III, 24	IV, 34	IV, 36
Shape Type	55 55 1	Oval	Canoe	Boat	Slender teardrop	Small tcardrop
Collection Number	130	131	132	133	134	135

neı
ıtin
cor
щ
ABL
E

~

	AUSTRA	ALITES FR	OM NNI	E. OF MOI	RGAN		71
Remarks	Posterior surface nearly flat. Complex fold-like pattern of flow lines, some of which trend into attenu- ated end. A few etch pits.	In part end accuration Complex pattern of flow lines, some of which twist across the attenuated end. Several etch pits and some flow lines over-deepened	by etching Complex, fold-like pattern of flow lines, on posterior surface, with few etch pits.	lines and etch pits and rare, minute höfchen and tischschen structures. 'Saw- mark' extends from pole to pole across anterior and	posterior surfaces Flow lines; pits up to 2·3 mm across	Fine flow lines and etch pits Smoothed by abrasion; with few remnant etch bits and	rare lunate 'chatter-marks' Few flow lines and etch pits, mainly smoothed by abra- sion
Flow swirls on posterior surface							
Surficial bubble craters							
Flow ridges on anterior surface		Worn, concentric around stagnation point	Worn, concentric				
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	Worn rim present	Flange remnant == 1.8 wide, but is worn	Rim present		9.0 (incomplete around	10rm) 9.3 14.1	14.5
Plate Number	IV, 38	IV, 33	I, 6		II, 19	II, 9 II, 10	II, 25, 26
Shape Type	ee ee	Teardrop	Lens		Oval core	Oval core (conical)	
Collection Number	136	137	138		139	140 141	142

Remarks	Flow lines, etch pits (some elongated)	Few flow lines and etch pits; generally smoothed by ab- rasion	Abraded and smoothed most parts of outer and fracture surfaces. Few fine flow lines, occasional etch pits, a few lunate 'chatter-	marks Smoothed by abrasion, but with remnant fine flow lines and small etch pits. Flow lines on fracture sur- face concentric with rim	of cavity Exposed internal bubble on f.e.z.8 = 2.2 mm across. Smoothed by abrasion; few remnant flow grooves worn and trend into tail. Few etch pits. 'Saw-marks' (= etch grooves) cross from distal edge of pos- terior surface to top end of f.e.z.8
Flow swirls on posterior surface	14-9 mm across on posterior surface				
Surficial bubble craters	Round; 3 · 3 mm across and 1 · 2 mm deep on posterior surface		Exposed mernal cavity – round, 5 mm across	Exposed internal cavity on frac- ture surface = 11.5×9.9 across (2 mm	
Flow ridges on anterior surface	0				
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	11.7	80.7 8.0	0	6.3 Worn, on one side only	14.3 worn
Plate Number	II, 16	II, 22 III 6		III, 12	IV, 24
Shape Type	Oval core (conical)	""" Broken	round core	Broken boat core	Teardrop core
Collection Number	143	144		146	147

§ Flaked equatorial zone.

TABLE 7-continued

72

GEORGE BAKER

Remarks	Abraded; few etch pits and flow lines, some of which twist into the attenuated tail end. 2 or 3 'navel' structures resemble 'höf- chen' and 'tischschen' structures
Flow swirls on posterior surface	
Surficial bubble craters	
Flow ridges on anterior surface	
Nature of peri- phery, depth of flaked equa- torial zone where present (mm)	15.6
Plate Number	IV, 25
Shape Type	Teardrop core
Collection Number	148

Flaked equatorial zone depth measurements are average value for each form, i.e. these zones are not always the same depth all around the circumference of a particular specimen, the depth values varying from 0.5 mm to 1.0 mm each side of the average.

GEORGE BAKER

30). The cavity depth of the broken hollow button illustrated in Pl. 9, fig. 3 is 7.3 mm. Since the depth of the specimen is 10.6 mm from the front pole to the broken back surface, the thickness of the front wall in its present aerodynamically ablated and partially terrestrially eroded state is 3.3 mm. Originally it was probably at least twice this thickness before the onset of aerodynamic ablation of the primary hollow form. The thickness of the rear wall has been calculated from diagrammatically reconstructing the original form as being a little under 0.5 mm; this is very thin, hence its failure to resist terrestrial erosion and persist as a complete, unbroken hollow australite.

As gauged from the specific gravity values listed in Table 1, it becomes evident that none of the specimens contain unbroken internal bubbles of a size warranting their classification as true unbroken hollow forms. The lowest specific gravity of 2.348 is for a teardrop-shaped form (Table 1, 98, Pl. 12, fig. 27) in which one or two enclosed bubbles in the size range below 2 mm diameter may be responsible for lowering the specific gravity 0 057 below the average value. Alternatively, the specimen may contain a number of scattered, even smaller internal bubbles. Holding this teardrop-shaped specimen against a strong beam of light failed to reveal the internal translucency shown by hollow forms with distinctly lower specific gravity values.

Some specimens reveal surficial bubble craters 2.5 mm and over in diameter (Table 7). These sometimes occur on the posterior surface (e.g. Pl. 9, 29; Pl. 10, 2, 31; Pl. 12, 6), sometimes on the anterior surface (e.g. Pl. 11, 12). They are not as deep as in the more distinctly broken hollow forms (e.g. Pl. 9, 3; Pl. 12, 30), and apparently represent the sites of gas bubbles of intermediate size (approximately $2.5 \text{ mm} \cdot 5.0 \text{ mm}$ in diameter) that may have burst at the surface of the tektite during formation at the extraterrestrial birthplace. Terrestrial erosion has subsequently worn down and modified the rims and walls of these intermediate bubble depressions.

Smaller pits on the surfaces of several of the specimens (e.g. Pl. 9, 10, 12, 29, 35; Pl. 10, 3, 11, 19, 21; Pl. 11, 2, 3, 4, 8, 13; Pl. 12, 6, 17, 19, 23, 24) were probably largely produced by differential solution-etching during burial in moist soils. Embedded in some of these pits, also jammed in or sometimes partially cemented along a few of the solution etch grooves and etched-out schlieren, and occurring in parts of the few flange-core boundaries still extant, there occurred occasional light-brown to red and brownish lateritic constituents comparable with the soils in the region of discovery. The colour variation of these embedded terrestrial soil constituents arises from differential leaching of the natural rust components (ferric oxide and ferric hydroxide) from place to place. The soil particles lodged in certain of the deeper parts of the sculpture pattern of the australites are mostly the finer fractions of ferruginous clay material carrying occasional small, well-rounded detrital grains of quartz ranging up to 0.5 mm across. These constitute the adventitious materials that were removed on cleaning the australites preparatory to weighing and determination of the individual specific gravity values.

Collisional bruising of some of the specimens has produced incipiently-formed to more specifically defined chatter-marks of lunate to sub-circular outline on some of these worn australites (e.g. Pl. 10, fig. 4, left-hand side of photograph, and Pl. 11, fig. 2, top left portion of photograph), and these have been further weathered to different degrees. In these 'bruise-mark' structures occur small areas where very thin flakes are tending to lift up, and minor amounts of the ferruginous clay constituents of the soil have filtered in to form thin films under parts of the bruised

portions of the tektite glass. Evidently collisional bruising of some specimens has arisen fortuitously during limited distances of transportation of australites and other constituents of lag deposits across the deflated areas constituting the bare ground on which they were found. Smaller, less frequent collisional 'bruise-marks' may have resulted from the impact of smaller stones or granules washed against the australites during run-off of rainwater on local gently sloping parts of the surface where they were found.

References

BAKER, G., 1955. Australites from Harrow, Victoria. Min. Mag. 30: 596-603.

, 1956. Nirranda strewnfield australites, south-east of Warrnambool, Western Victoria. Mem. Nat. Mus. Vict. 20: 59-172.

-, 1959a. Tektites. Mem. Nat. Mus. Vict. 23: 5-313.

-, 1959b. Australites from Kanagulk, Telangatuk East and Toolondo, Western Victoria. Mem. Nat. Mus. Vict. 24: 69-89.

-, 1963. Exfoliation from the anterior surface of a flanged australite button, Port Campbell, Victoria, Australia. Chemie der Erde 23 (2): 152-165.

75.

-, in press. Australites from Mulka, Lake Eyre Region, South Australia. Mem. Nat. Mus. Vict.

MAWSON, SIR D., 1958. Australites in the vicinity of Florieton, South Australia. Trans. Roy. Soc. S. Aust. 81: 161-163.

Explanation of Plates

PLATE 9

Fig. 1-46-Eroded round forms of australites from near Morgan, S.A. 1-posterior surface and 2-anterior surface of the same flanged australite button; 3-posterior surface and 4-anterior surface of the same broken hollow form (4 reveals worn remnants of flow ridges); 5-6-posterior surfaces of lens-shaped forms; 7-8-anterior surfaces of two different button cores from which the flange has been shed; remainder 9-46—posterior surfaces of worn, mainly smoothed round cores sometimes with small craters (29), chipped edges (33) and flow lines and etch pits (20, 43, 45). Photographs, natural size, by N. Philip.

PLATE 10

Fig. 1-34 -Eroded oval forms of australites from near Morgan, S.A. 1, 3 reveal flow swirls; 2, 31 show surficial bubble craters while 34 possesses a large bubble crater on the posterior surface of a small form; 26 is an end-on view to show the conical core type of outline, with flaked equatorial zone showing on each side. Irregularity of outline in plan aspect of some forms (e.g. 16, 23, 25, 27, 28, 30) is due to erosion and fracture. Photographs, natural size, by N. Philip.

PLATE 11

Fig. 1-34—Eroded round forms (1-6), boat-shaped forms (7-31), and canoe-shaped form (32-34) of australites from near Morgan, S.A. 3, 4 reveal flow swirls; 9, 10, 27 show flow lines; 12 shows a large bubble crater (at top of photograph); 19 shows distinct flange remnants but 14, 17, 18 show only remnants of flange stumps and flange band; 6—side view of a broken form; 32—posterior surface; 33—side view, and 34-anterior surface of the same canoe-shaped form, with narrow flange (32) and remnants of flow ridges (33). Some of the boats are broader forms (e.g. 7), others are more slender for their length (e.g. 8, 26, 27). Unless otherwise stated, posterior surfaces are shown. Photographs, natural size, by N. Philip.

GEORGE BAKER

PLATE 12

Fig. 1-38—Eroded dumbbell-shaped forms (1-16), 'peanut-like' forms (17-20), oval 'nut-like' form (21), and teardrop-shaped to pear-shaped forms (22-38) from near Morgan, S.A. Nos. 2, 4, 5, 8, 25, 28 show poorly marked flow lines; 6, 30 show exposed internal bubble cavities; 26—side view of gibbosity of teardrop-shaped form and detached attenuated tail of a teardrop-shaped form (probably from two different but allied specimens); 31, 33 show small remnants of the flange at the broader end of the gibbosity; the constricted waist region of the dumbbell-shaped forms varies from broad and stout (e.g. 1, 2, 7) to narrow and slender (e.g. 5, 6); 11 reveals minute remnants of the flange structure in the waist regions; a star-shaped erosion sculpture pattern is shown by 29. Photographs, natural size, by N. Philip.